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A diagrammatic expansion for the density 
correlation function 
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Abstract. The density field formalism of Sherrington is used to obtain diagrammatic 
expansions and thus complete expressions for the quantities that enter into the evaluation 
of the density correlation function. I t  is shown how these diagrammatic expansions 
satisfy two important sum rules to all orders. The plasmon mode is obtained in a 
simple fashion from these expansions. 

1. Introduction 
In  the new method of expansion in quantum many-body theory developed by Edwards 

et al. the task of obtaining the one-body Green function becomes that of solving a small 
number of coupled diagrammatic equations (Edwards and Sherrington 1967, Bhagavan 
and Edwards 1967, to be referred to as I and I1 respectively). Sherrington (1967, 
to be referred to as 111) has shown how the analysis of I can be extended to obtain an 
expansion for the density correlation function to a given order. In  the present work we 
are concerned with obtaining diagrammatic equations for the case of the density correlation 
function, thus arriving at complete expressions for the quantities that enter into the equations. 
We will then show that the plasmon mode is readily obtained from these diagrammatic 
equations, and that further they make it possible to demonstrate in a very simple manner 
that the expansion satisfies sum rules to all orders. 

In  the appendix we present a very brief account of the analysis contained in I and 11. 
This may help the reader to follow the arguments given below without immediate reference 
to I and 11. 

We restrict ourselves to a translationally invariant ‘normal’ system of fermions of the 
same kind at absolute zero temperature. In  the notation of 11, the Feynman functional 
measure for the given system becomes 

t - 2 ~gic*jaE~*:BE,* l+k ,a ,6 ,+E,* j -k .a ,BI-~s  

jklaR 
E i E z E s  

where g,, the Fourier transform of the two-body interaction g( /r l  - r21), depends only on 
the absolute value of the linear momentum. 

I 4 1 
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In  I11 Sherrington, by the suitable introduction of an auxiliary real Bose field 4, 
replaces the measure P by its equivalent 

([*I, [*+I, [$I> = exp(iAdenSitY) pdens i ty  

-1 = exp 2 (El - k2 +l")$ktaEl$kaEl- 2 & 4 k E l g k  4 k E l  ( kCfE1 k E i  

where the double brackets on the left- and right-hand sides stand for averages over PdenSity 

and P respectively. The object g@,ht$$tt))) is the bound part of the density correlation 
function. Therefore the spectrum of the collective excitations of the system is given by the 
pole of <<+4> in the energy plane. 

The prime on the third summation sign in (1.2) means that + o , o  is excluded, which of 
course implies that $+ and t) cannot take on identical sets of indices. This restriction ensures 
that the crucial condition (4) = 0 is satisfied. 

Henceforth we shall use the notation 
density. 

< ' $ k E 4 - k 9 - E B  = G 2 ; k ~  

Sherrington proceeds to evaluate G and GZden to a given order by solving the following 
equation to that order : 

By introducing the quantities 

and putting 

(1 .5) 

(1 . f)  

he obtains Pden as an expansion in terms of the Gaussian 

den -1 
POden = exp ( - i  2 $ ~ C ~ . E ~ ~ ; & ~ $ ; U E ~ -  2 Q # k E l ( G 2 ; k E I )  $-* , -El  } (Ia9) 

kCfE1 k E  I 

and polynomials of $, $t and 4. 
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The quantity vqE introduced into the above equations has, by definition, the dimen- 
sion of the square of the interaction g ,  and is an odd function of its arguments, i.e. 
T~~ = - T - ~ , - ~ .  The latter property ensures the energy independence of the energy 
denominators in the subsequent expansions, as will be evident later on. One can, for 
example, assume that vqE has the form gq2(6(E) - 6( - E)},  where 6 is the Heaviside step 
function. 

The  definitions of the auantities D. W. W and 9 introduced above differ from the 
I ,  

corresponding ones in I11 c y  the factor 7 .  7 corresponds to the E of 111. 
On substituting from (1.5) and (1.6), (1.4) becomes 

(Lden  + K d e n  + J,fden)pden = 0 
where 

and 

a t a 
+ i+k-q.E,-E$~?E, -t+ i$kaE,$k-q,a,El-E 

YE a$ - q ,  - E 

The  generalized Hermite operator Lden annihilates the Gaussian Poden, i.e. 
L d e n p  den = 0. 

0 

From (1.5), (1.6), (1.7) and (1.8), we obtain 

- 1 + s i : t y E  - 1 + s,";;,, 
E-q2+P+R:;;, E - q2 + p + Ri;:, GqyE = ___ 

and den v q E +  yqE 
G2;qE = 

- E + v q  Egq - + gq ' 

The spectrum of the collective excitation is given by 

2. Diagrammatic equations 
E r)qEgq-'+gq. 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

Thegraphical notation for $, ++, 8/2$ and a/8$+ and the rules for their combination 
are the same as in 11. 

We represent + and aj24 respectively by a thick full line and a broken line, both 
without directional arrows. These we call boson lines. The  rules for their combination 
are the following: 

(i) Two thick full lines joined up between any two vertices stand for GZden, e.g. 
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d e ?  d e n  
C k ~  -k$-' = G2; h E  = G2 ;-h,-E = s k ; ~  k ~ '  

(ii) A full line joining a broken line gives unity, if the former stands to the left of the 
latter : 

o------i) = I 
k€ kE 

(iii) If in (ii) the ordering of the lines is reversed then the result is zero: 

e---- = 0 (cf. o-+++-c 0) * kE kE 

(iv) Two broken lines when joined together give zero: 

0 (cf. @++?++e = 0) . O - - - - - - O  
&E -&;E 

(v) Lines of the fermion type do not join up with those of the boson type. 
Rules (iii) and (iv) result from the fact that 7 is an odd function of its arguments,"aking 

1 7 k ~ ( a / a ~ - , , - . ) ~ - , , - E p ~ " '  and rkE(a/a~_, , - , ) (a/a~kE)POdee" give the same type of 
results as (a/a$;uE)$iaEPOden and (a/a$+,,)( 5/8$kuE)POden. 

The interaction vertex functions for the present case are 

An external wiggly or broken line is always assumed to operate to its right. It is understood 
that each interaction vertex carries a factor of i, and the vertex with the broken line carries 
a factor of 7 .  

In  terms of the above graphical objects, equations (1-11), (1.12) and (1.13) take on the 
form 

- E - - - - - - .  +---"- 
-qr,-E -g,-E 

and 
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We introduce the expansion 

pdrn 

5 

into ( l . l O ) ,  and as in I1 gather together diagrams with the same set of external lines and 
set their algebraic sums equal to zero to obtain the following coupled diagrammatic equations : 

I k E  IkE 

. + e t c .  + 
&t; 

+ e t c .  (2.7) 
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Again, we follow the prescription given in I1 to identify energy-independent and 
dependent quantities, thus obtaining the equations for Rden, 99, Sden and 9': 

where the first term on the right-hand side is the value of Rlden to the first power in g 
(cf. 3.28 in 11) 

+ t etc .  (2.9) 

+ e t c .  

The equations for T ~ ~ ~ ~ ,  RRZden and SZden are obtained by reversing the arrows in the 
equations for T ~ ~ ~ ~ ,  Rlden and SIden respectively. 

The  indices of the full lines occurring between two vertices are always summed over. 
A t  each vertex the energy, momentum and spin are conserved. . 

The energy denominators are extracted in the same manner as in I1 and turn out to be 
independent of energy; the $, #t  and 4 lines contribute respectively the terms (- wzden), 
widen and W, for we have 

k a E  0 (-Wden )* P den Lden* p den = 2 ; k a E  kaE 

den t p d e n  = Wden $,t p o d e n  
*kaE 1 ; k a E  kaE 

For example gives 
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den 
(wkE-W2;j,E,+wlqrennE,)-1S(-E-El + 

= ( -E - El +E2 + energy-independent terms)-lS( - E  - E, +E2) 
= energy-independent terms. 

This circumstance and the form of the equations (2.8) and (2.10) make Rlden, RZden and 2 
independent of energy. 

A self-consistent iterative procedure is used for solving the above coupled equations 
for G and G2den. 

3. The plasmon equation 
The frequency of the collective mode to order g2 can be obtained straightaway by 

inserting the value of 92 to that order into the density excitation equation (1.16). From 
(2.10) we have 

j E ,  a 
, +  - _ _ - - - -  iE, 4 

k E  AkN -g;l qkF + - - - - - - -  : : 
-k -E y k E  -k -E =%$+-- 

= g k - l T k E +  2 j d j  d l  dE, dE2 6( - j+ 1- k)6( - E, + E2 - E)  
a 

(3.1) becomes 

Hence the plasmon frequency is given by (in units of h = 1) 

4. Sum rules 
The diagrammatic form of the above equations makes it possible to show in a simple 

manner how the time-derivative sum rule for G and the f sum rule for the density correlation 
function can be satisfied for any truncation of Pen (and thus to any nominal order in R, 
S and 92,Y). 

(i) In  the k, t representation, the time-derivative sum rule for G has the form 

In  the k, E representation it becomes 
m 1 dEEGkE(exp(iEO+)-exp(-iEOf)] = - i  ( k 2  4- 2 (gO-g,-k)"lfl). (4.1) 

I n  I ,  Edwards and Sherrington have shown that since the values of RPHZ and SpiEa, to 
the first power in g, are respectively Xt4(go-gl-k)nl~ and zero, (4.1) takes the form 

- m  14 

d E  S:g;{exp(iEO+) - exp( - iEO+)} = Rty;; (4 4 
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where Slden) and Rlden) are respectively the sum of all nominal orders of Slden and Rlden 
excluding the first. Similarly for SZden and RZden. 

It is clear that (4.2) is always satisfied to any given order, if we substitute to that order 
from (2.8) and (2.9)) because the structure of the equations is such that Rden and Sden 
always differ by a factor of G, as for example the following substitution shows: 

den 
Sf:iE, = 1 dE3 dE, dn  d m  G ~ ~ ~ E , G m n E , ~ l  ( -n, - E4; m/3E3, kctE) 

E)6(n + m - k). den d e n  
(W-n , -E l -WZ;maE,+W1:kaE) -16 , ,6 (E ,+  E3- 

R;:;, is the same as SffiE, above, but without the factor GmaE,. 
(ii) Denoting the density correlation function by C, we write 

= Cfree + Cbound 

where cfree and Cbound, which refer respectively to the contributions due to the propagation 
of two non-interacting free particles and two interacting particles, are given by 

Cfree(k, t> = 2 <$Z+k(‘)$;+k(’) >free<$Z(o)$Zt(t) >free 

= iz 2 Gfree(2 + k, t)Gfree(l, - t )  
E 

(4.3) 
1 

Cbound(k, t ,  = igk6(t) + Gynk(t)* 

The f sum rule when expressed as a zero-time-derivative sum rule has the form 

a 
[ is  Ck(t)) = hTkz 

t = o  

(4.4) 

(4.5) 

where N is the total number of particles in the system. 
Now we find that Cfree by itself exhausts the sum rule ( 4 4 ,  for from (4.3) 

where we have used the relation 

Gfree;k(t) = i exp( - ik2t) 

and the fact that n depends upon the absolute value of the momentum. Therefore the 
zero-time-derivative sum rule reduces to the form 

Substituting (4.4) into (4.6) and expressing the resulting relation in the k, E representation, 
we obtain 

m r d E  EG,d:tE exp( - iEO) = 0 .  (4.7) 
Writing 

= -7kE- - y k E ’  + gk’G:YiE 

the sum rule (4.7) becomes 
m 

d E  E9’hE’ exp( - iEO) = gk) 
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which has the same form as (4.2). From the diagrammatic equations for 9, W, T~~~ and 
it is seen that (4.8) is satisfied to all orders, since Y and W always differ by a factor of G. 
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Appendix 
The Feynman functional integral definition of the one-body Green function is 

where P stands for the Feynman functional measure exp(iA). A is Hamilton's principal 
function, or the action, as it is sometimes called. For the system under consideration 

A = Afree + A i n t  

Afree = 2 (El - K 2  + l* )+~aE,#kaE,  
kUEi 

A i n t  = - 2 ~ ~ i C * ~ u E l * ~ ~ E ~ * ~ + k , ~ , E I + E J * j - k , a . E I - E , .  

The usual Feynman perturbation theory can be obtained by expanding P as a series in 
Alnt. The difficulties encountered by the usual expansion schemes rest on the fact that G 
depends, not only in practical evaluation but also formally, on the expansion parameter. 
Since we wish to avoid these difficulties, we seek to expand P in such a way that G is 
formally independent of the expansion parameter. Now, it is seen that the solution 

P = po = exp - i 2 # ~ ~ E , G ~ : E , # . L ,  
k a E ,  

satisfies (Al). If, therefore, we were to expand P in the form 

P = Po + (polynomials in t/~ and $+) x Po 

= P,+P,+P,+ ... (A3 ) 
and ensure that only Po determines G, we will have achieved our object. The  choice of (A2) 
as the zeroth-order approximation to P, and the crucial conditions 

1 #qq.lR#iyE ( p i )  8#s#i. = (A4) 
i =  l,Z,etc. 

lead to coupled integral equations for G. 
Po being a Gaussian, the expansion (A3) is in terms of Hermite polynomials in function 

space. Therefore, we set up a functional differential equation for P, and solve it in terms 
of Hermite polynomials. 

We combine the two infinite sets of equations 
ap I aA i--= ---p 

'*;YE '*:?E 
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and 
aA P ap i-=-- 

Y E  ' # q  Y E  
to obtain a 

( 4  
a 

A generalized Hermite operator of the form 

would be orthogonal to Po if we put 

G as given by (AS) adequately handles all those elementary excitations of the many-body 
system which arise out of single-particle excitations. ( R  turns out to be independent of 
energy.) If we were to write (A6) in such a way as to display explicitly the operator L in it, 
and then proceed to solve for P in terms of Po and higher-order Hermite functions, then 
we will arrive at equations which permit the evaluation of G in the form (A8). As a result 
of rewriting (A6) in this fashion, we obtain 

The prime on the second summation sign means that $ and $t cannot take on identical 
sets of indices ; the pairs that have been extracted are thought of as being included in R. 

We note that 
PO) $,Po, *lfP0, $l$ztPo (1 f. 2) 
($141 - iGdP0, $1$2$3 V4 tpO ( 1 , 2  # 3,4), etc. 

are eigenfunctions of L and independent Hermite functions of different orders. 
We expand P in the form 

a a 
P = Po + 2'6(1+ 2 - 3 -4) ~ ( 1 )  2,3 ,  4)$1$2$3'---+ ~*(1 ,2 ,3 ,4)$1  '$zf$3 -F i a*4 8344 

a 
a*, 

- U( 1,2,  3 )  4) 7 $2$3t Po + vertex functions of higher order 

insert it into (A9), and equate the coefficients of each independent Hermite function to 
zero. We thus get coupled equations for G, R) 5') r and cr, where R and S have the form 
Tr(7G) and Tr(oG), respectively. 
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It is important to note that the prime on the summation sign in (A10)) which forbids 
the # from having the same set of indices as the $f) makes sure that the crucial conditions 
(A4) and (A5) are satisfied. 

In the diagrammatic language, where #, #+) a/&# and a/@!+ are represented by 

c--+- _t_o v and w, respectively, we have 

The  diagrammatic technique makes it possible to by-pass the very tedious algebra involved 
in the method of comparing coefficients. The  required equations are obtained by the 
much simpler task of collecting all diagrams with the same set of free external lines and 
setting their algebraic sum to zero. They have been written down in $ 3 of 11. 
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