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A diagrammatic expansion for the density
correlation function

M. R. BHAGAVAN and P. LAMBERT
Department of Mathematics, Bedford College, University of London
MS. veceived 4th September 1968

Abstract. The density field formalism of Sherrington is used to obtain diagrammatic
expansions and thus complete expressions for the quantities that enter into the evaluation
of the density correlation function. It is shown how these diagrammatic expansions
satisfy two important sum rules to all orders. The plasmon mode is obtained in a
simple fashion from these expansions,

1. Introduction

In the new method of expansion in quantum many-body theory developed by Edwards
et al. the task of obtaining the one-body Green function becomes that of solving a small
number of coupled diagrammatic equations (Edwards and Sherrington 1967, Bhagavan
and Edwards 1967, to be referred to as I and II respectively). Sherrington (1967,
to be referred to as III) has shown how the analysis of I can be extended to obtain an
expansion for the density correlation function to a given order. In the present work we
are concerned with obtaining diagrammatic equations for the case of the density correlation
function, thus arriving at complete expressions for the quantities that enter into the equations.
We will then show that the plasmon mode is readily obtained from these diagrammatic
equations, and that further they make it possible to demonstrate in a very simple manner
that the expansion satisfies sum rules to all orders.

In the appendix we present a very brief account of the analysis contained in I and IL
This may help the reader to follow the arguments given below without immediate reference
to I and II.

We restrict ourselves to a translationally invariant ‘normal’ system of fermions of the
same kind at absolute zero temperature. In the notation of II, the Feynman functional
measure for the given system becomes

P = exp(id) = exp {i S (Ey— R e e,

ROE,

~1i Z %gk¢‘sz1¢IZEz¢l+k,6,E5 i -kaEy ~E3} (1.1)

JRiaB
EEEy

where g, the Fourier transform of the two-body interaction g(|r, —rs|), depends only on
the absolute value of the linear momentum.
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In IIT Sherrington, by the suitable introduction of an auxiliary real Bose field ¢,
replaces the measure P by its equivalent

Paensiv([y], [1], [¢]) = exp(i4emsi¥)
= exp {i > (B "k2+M)¢:aEl‘ﬂkaEl—i Z 3er. & * bz,

keEq RE,

+ Z , SbLaElemEﬂsk —LE,~E, (1.2)

klo
E\E
and shows that e

bpebp -2y = —igu—8" 2 <¢1251¢1+k.a,EL+E¢;ﬁza¢j-k,5,E2—E> (1.3)
£z,
where the double brackets on the left- and right-hand sides stand for averages over Pdensity
and P respectively. The object g p*nb®)y is the bound part of the density correlation
function. Therefore the spectrum of the collective excitations of the system is given by the
pole of {¢¢» in the energy plane.

The prime on the third summation sign in (1.2) means that ¢, , is excluded, which of
course implies that " and ¢ cannot take on identical sets of indices. This restriction ensures
that the crucial condition ¢ = 0 is satisfied.

Henceforth we shall use the notation

Kbpebp.-x) = Gg?:;“y.

Sherrington proceeds to evaluate G and G2 to a given order by solving the following
equation to that order: -

s { o ( 0 3Aden) N 0 ( 0 N 6.4““)
‘ 1- + 1
qvE &Aq VE ‘7‘/‘2712 aSZ’ZVE 31/12;71; a‘ﬁqu 8¢’q VE:

. & ( o, aAden) } paen "
7 i = 0. .
e a975—-11,—}3: aquE aqqu

By introducing the quantities

dden 1 4 Sden

1;qvE 1;qvE
D, = + & (1.5)
den den qE = MyE qF
dz;equ - 1+S2;eq~/E
den —_ —n2 den
Prigre T E-q +‘u+R1;q7
W= ~E+n,z8," +% (1.6)
den _ L_ 42 den qE MqESq q
w2;qu =E g +‘LL+R2;¢17
and putting
den den
G . dl;q‘/E _ d2:q'/E (1 7)
qvE T den  ,,den :
1;qvE 2;97E
Dy
Géen - 2% (1.8)
2;qE WqE
he obtains P%" as an expansion in terms of the Gaussian
. ‘ -1 ,t den | _
Py" = exp {"1 Z Ypar, Grorrar, — z 3bur,(Gajpe,) " Pt -1, } (1.9)
koE, ' kRE;

and polynomials of i, 4t and é.
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The quantity 7,z introduced into the above equations has, by definition, the dimen-
sion of the square of the interaction g, and is an odd function of its arguments, i.e.
Nge = —7-q,-p- Lhe latter property ensures the energy independence of the energy
denommators in the subsequent expansions, as will be evident later on. One can, for

‘example, assume that 9,5 has the form g,>{0(E)—60(—E)}, where 8 is the Heaviside step
function.

The definitions of the quantities D, W, #Z and & introduced above differ from the
corresponding ones in III by the factor . % corresponds to the ¢ of IIL.
On substituting from (1.5) and (1.6), (1.4) becomes

(Lden+Kden+Mden)Pden =0 (110)

0 0 0 0
. 44 d
Lien = 3 ldl;e;ma——'a“f— idalgys 7
qvE 5bq*/E ‘zl’q./E qu,,E '11’qu

@ den
———+ W1, gyr gy
6‘75- Ea‘iqu vy a‘/’qu @

e g e ¢

o @ don 0 0
Kden—'z -iS SenE — 185,498 ——

qvE v 8¢q/3 85[’ o a‘ﬁ;m 3%,,5

0 0 gen O

qE___—-—_ - l;q}'_—

aqs q.— anqu a¢qu

+ Ria, ¢ —— i+ (By—E) ———
q7E

and 0
Moen = z —lgsq ~BE-E ‘l’k/E1
a‘)l‘qu

qYE
kOE, P

0
+idy- g5, - slnrE, = Y + W, Yo - g5 3<f>—q,—E. (1.13)

The generalized Hermite operator L3 annihilates the Gaussian Py, i.e.
LdenPoden = ().
From (1.5), (1.6), (1.7) and (1.8), we obtain

where

+1Dyp

den
— Wa,qvE l/' yE—
q q

—i¥

bogos (1.12)

den den

148145 . 1+.5;. ‘qvE
_ 2 a T o d
E—gq +H+R1f2./ E—¢q +;L+R2;e;‘y

(1.14)

qvE =

and den Nge T qu
Gzﬁqg = 1 .
—E + angq -+ t%q
The spectrum of the collective excitation is given by

E = 58, + 7 (1.16)

(1.15)

2. Diagrammatic equations

The graphical notation for i, ¥, 8/&y and &/&* and the rules for their combination
are the same as in IT.

We represent ¢ and /8¢ respectively by a thick full line and a broken line, both
without directional arrows. These we call boson lines. The rules for their combination
are the following:

(i) Two thick full lines joined up between any two vertices stand for G,%", e.g.
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- den — den -
RE IS T Cune * Gevwst = SppkED

(ii) A full line joining a broken line gives unity, if the former stands to the left of the

latter:
%E" w7

(iii) If in (ii) the ordering of the lines is reversed then the result is zero:
O—kz.:‘-ﬁo = 0 (ef. OWw—>—0 = 0) .
(iv) Two broken lines when joined together give zero:
Opzrmios O =0 (ef. odwwwIWO = () .

(v) Lines of the fermion type do 7ot join up with those of the boson type.

Rules (iii) and (iv) result from the fact that 7 is an odd function of its arguments, making
M 0] 0b g - )bk, pPo"" and 7,p(0/ 0, - £)(0] 0y x)Po°* give the same type of
results as (0 0l )l P o™ and (0] 01, 5) (0] Oy £)Po®™.

The interaction vertex functions for the present case are

An external wiggly or broken line is always assumed to operate to its right. Itis understood
that each interaction vertex carries a factor of i, and the vertex with the broken line carries

a factor of 7.
In terms of the above graphical objects, equations (1.11), (1.12) and (1.13) take on the

form

Ld'n=Zi+i+i ——————— @ ———————
373 gyt 473 473 -q.-£ g&

qYE

Y
-q,-£ -, £ (2.2)
and
o 4
£ 2
e =y > 5 g e
en - + + P, 3)
£ £
g7E “.{E\ e B 9 e 9
af; q'dn
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We introduce the expansion

, 4@ ‘f‘<<\ (Q‘g\
den _ pyden - + @ A" " (R AR VU
S Z @ 1ot Loz, * kE
.dﬁ\ .d\E\ 'd\ \

den
A

into (1.10), and as in II gather together diagrams with the same set of external lines and
set their algebraic sums equal to zero to obtain the following coupled diagrammatic equations:

+ etc. (2.5)

den

T2 .
mpE£; JAE

ﬂden

+ etc. (2.7)
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Again, we follow the prescription given in II to identify energy-independent and
dependent quantities, thus obtaining the equations for R%", , S%* and &:

/ nEy -n-Ey
.‘ B L)
jqﬁ’ﬂ JdE, ; (0 a7 LR JaE, mp £ sk,

nk, N,
+ W + ete. (2.8)

where the first term on the right-hand side is the value of R;%" to the first power in g
(cf. 3.28 in II)

; nEyn-Ey
= g ‘@ >
JaE, . Ja£, Z JdE, !m“f:} z JoE,
+ + et. (2.9)
/ nﬁE4
g et ) el
. mpE;

(2.10)
+ etc
, npE,
e (O - L ':k::é'oi;ﬁ;@“ﬁ"‘ rete@ID

The equations for 7,87, R,%" and S,%" are obtained by reversing the arrows in the
equations for 7,92, R;%" and S,%" respectively.

The indices of the full lines occurring between two vertices are always summed over.
At each vertex the energy, momentum and spin are conserved.

The energy denominators are extracted in the same manner as in IT and turn out to be
independent of energy; the ¢, 4% and ¢ lines contribute respectively the terms (—w,de7),
w,%" and W, for we have

LdenlﬁkaEPoden = (__.wden )‘)l’ko:EPOden

2:kaE

Lden + P den _— den T den
l/;kaE 0 L ks Yhar Py

LdenqSkEPOden == WquSkEPoden.

&
For example T e gives
e B

)
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(Wi — w;;sz, + wf?fa‘}a) “(—E-E +E,)
= (—E—~E, + E,+energy-independent terms)~18( - K~ E; + E,)
= energy-independent terms.
'This circumstance and the form of the equations (2.8) and (2.10) make R, %1, R,d" and %
independent of energy.

A self-consistent iterative procedure is used for solving the above coupled equations
for G and G,9",

3. The plasmon equation

The frequency of the collective mode to order g? can be obtained straightaway by
inserting the value of Z to that order into the density excitation equation (1.16). From
(2.10) we have

P 1 FEa JE
"G M b g O e
w9 e T L T A KE hE Sy T KE

= & nt >, [ dj LB, dEy 8(—j+1—k)3(— By + B, — E)

X Neg{ Wig = Way 5,0+ W1,1m,0) " (= 1Gjer, +1Goz, ) (3.1)
Putting
Wi ~ —E+nz8,71

Wojor, ~ E1—j2+u

Wigr, ~ Ex— P+ p
(3.1) becomes s :
Mo — My

E@k ~ _gk_lnkE'*— %fdjdla(—j-i-l_k)nkEW'

Hence the plasmon frequency is given by (in units of 2 = 1)

v ~ > [ df dUS(—j+ 1= Ry — mye) (g™ 52— 12) 1.

4, Sum rules

The diagrammatic form of the above equations makes it possible to show in a simple
manner how the time-derivative sum rule for G and the f sum rule for the density correlation
function can be satisfied for any truncation of P%" (and thus to any nominal order in R,
S and Z, ).

(i) In the k, ¢ representation, the time-derivative sum rule for G has the form

g 0
i [{— Gt —-—Gt} ]:—‘{k2+ —&- }
{Gan] | -[gee] ] =i+ Seam
In the k, E representation it becomes
f dE EG, s{exp(iE0*) — exp( — iE0*)} = —i {kz +S (go—-g,_k)nw}. (@.1)
- 18

In I, Edwards and Sherrington have shown that since the values of R}, and S§¢hz,, to
the first power in g, are respectively Z;5(go—g,- )3 and zero, (4.1) takes the form

f dE S22 (exp(iE0*) — exp( — iE0* )} = R (4.2)
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where S;%°*” and R,%¢™ are respectively the sum of all nominal orders of S;%" and R, %
excluding the first. Similarly for S, and R,%".

It is clear that (4.2) is always satisfied to any given order, if we substitute to that order
from (2.8) and (2.9), because the structure of the equations is such that R%® and S¢e»
always differ by a factor of G, as for example the following substitution shows:

Stieze = f dE; dE, dn dm Goeny Grppra” (—n, — Ey3 mPE,, koE)

x(W_n-m Wa,mas, + W1ipen) " 04gd(Ey+ Eg— E)S(n+m—k).

R{%%, is the same as S{f}z, above, but without the factor G455,
(ii) Denoting the density correlation function by C, we write

C= Cfree + Cbound

where Cireo and Chounas which refer respectively to the contributions due to the propagation
of two non-interacting free particles and two interacting particles, are given by

Cireeolks 1) = 3, <O 4(0) D rvee GO (1) D e

=123 Greell+k, )Gioo(l, —1) (4.3)
!
Coounalk, 7) = 18:8(2) + GT(2). (4.4)
The f sum rule when expressed as a zero-time-derivative sum rule has the form
{%C"(t)}ho — NE? 4.5)

where NV is the total number of particles in the system.
Now we find that Cyy, by itself exhausts the sum rule (4.5), for from (4.3)

9
{1:;cfree(k, t)} = S {(I4+k)2~5n = NE?
o

t=0 {
where we have used the relation

Gfree;k(t) = iexp(— ikzt)

and the fact that # depends upon the absolute value of the momentum. Therefore the
zero-time-derivative sum rule reduces to the form

0
i— C, k¢ = 0. .
{1 ot bound( ) (4 6)

t=0

Substituting (4.4) into (4.6) and expressing the resulting relation in the k, E representation,
we obtain

f dE EGLT, exp(~iE0) = 0. (4.7)
Writing o7

EG;I?:E = —Mpe— Lrp’ + (e P+ X )sze;E

= — — > (G den
= — Mg~ Lpr’ + Ay GZkE

the sum rule (4.7) becomes

f dE ES .y’ exp(—iE0) = %, (4.8)
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which has the same form as (4.2). From the diagrammatic equations for &, %, 1% and {
it is seen that (4.8) is satisfied to all orders, since & and Z always differ by a factor of G.
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Appendix

The Feynman functional integral definition of the one-body Green function is

—i [ thgyebsPTL 8 8
quE = (Al)
| P sy syt
where P stands for the Feynman functional measure exp(i4). 4 is Hamilton’s principal
function, or the action, as it is sometimes called. For the system under consideration
A= Agee+ Ainy
Afree = Z (El_k2+M)¢;aEllﬁko:E1

keE,

S :
Ay = — z %gk¢jaEl9blﬁEz¢l+k‘B,Eg+Ea¢j—k|a,E1—E3'

The usual Feynman perturbation theory can be obtained by expanding P as a series in
A The difficulties encountered by the usual expansion schemes rest on the fact that G
depends, not only in practical evaluation but also formally, on the expansion parameter.
Since we wish to avoid these difficulties, we seek to expand P in such a way that G is
formally independent of the expansion parameter. Now, it is seen that the solution

P =P, =exp (_i > ‘/‘kaEIGk_a;l‘/’:aEl) (A2)
koE;
satisfies (Al). If, therefore, we were to expand P in the form
P = P,+(polynomials in ¢ and %) x P,
= Py+Pi+Py+ ... (A3)

and ensure that only P, determines G, we will have achieved our object. The choice of (A2)
as the zeroth-order approximation to P, and the crucial conditions

[ by (i=1,zz,eto. Pi) 18 86% = 0 (A4)
f(z Pi)H8¢8¢*=O (A5)

lead to coupled integral equations for G.

P, being a Gaussian, the expansion (A3) is in terms of Hermite polynomials in function
space. Therefore, we set up a functional differential equation for P, and solve it in terms
of Hermite polynomials,

We combine the two infinite sets of equations

. oP oA
i =
ot

= — P
opt

qvE qvE
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and
. oP oA
i = — P
. a‘l"q vE al)bq vE
to obtain ; ; o ; ; i
Z{ (i —+ )+ - (i + )}P=O. (A6)
qvE a‘zl‘qu a‘ﬁqu 8’7["1 vE al/’q vE 6‘/’q vE ESAq vE

A generalized Hermite operator of the form

L=2 [&# {(1+Sm)1 P +(E“k2+M+qu)‘/’qu}
qvE arE qvE

’ {(1+S )i ¢ —(E—K2+p+R,) H (A7)

EN ST - K E

aS[l;m v a’il‘qVE e

would be orthogonal to P, if we put
1+8,,
Coip = . (A8)
E-k+p+R,,

G as given by (A8) adequately handles all those elementary excitations of the many-body
system which arise out of single-particle excitations. (R turns out to be independent of
energy.) If we were to write (A6) in such a way as to display explicitly the operator L in it,
and then proceed to solve for P in terms of P, and higher-order Hermite functions, then
we will arrive at equations which permit the evaluation of G in the form (AS8). As a result
of rewriting (A6) in this fashion, we obtain

[L Za(S'a+R¢ +a(5'3 Ry
S (St Rt v (Sus g =Rk

qvE q7E qvE

0
¥

“{ Z'gk ( ¢q—k;7,E—E3¢'l+k,B,E2 +E3‘/’15Ez PO
al)l'q}'E

0
+l/‘;—k,v.E—Ea‘)l':-i-k,B.Eg+E3¢‘IBEZ ——‘) ” P=0. (A9)
8(,[&';7}2

The prime on the second summation sign means that b and * cannot take on identical
sets of indices; the pairsyif; T that have been extracted are thought of as being included in R.

We note that
Py, P, $1TPo, Yt TPo (1 # 2)
(et T —1Gy) Py, dbaba by 1Py (1,2 # 3, 4), ete.

are eigenfunctions of L and independent Hermite functions of different orders.
We expand P in the form

P=Py+ >'5(1+2-3~ 4){7(1 2,3, 4)pyboipst —j——l—r*(l 2,3, 4)9&1*1//2*5&38;

—0(1,2,3,4) —— b5t P, + vertex functions of higher order (A10)

a¢ ' 'a}T}
insert it into (A9), and equate the coeflicients of each independent Hermite function to
zero. We thus get coupled equations for G, R, S, 7 and o, where R and S have the form
Tr(rG) and Tr(cG), respectively.



Density correlation function 11

It is important to note that the prime on the summation sign in (A10), which forbids
the i from having the same set of indices as the ¥, makes sure that the crucial conditions
(A4) and (AS5) are satisfied.

In the diagrammatic language, where i, 4%, /0 and 0/0¢:" are represented by

o , O » wwwaewwO  and  Omwwgnew o respectively, we have

q
I
\Aﬁ
1,
3
*
i
/ 4
qQ
"
: 97

or

(%)
i
b
3

wn
3
>

: ) =
Yy . 37? -
Wwvw = /Q)‘X\\ , ete.
e

The diagrammatic technique makes it possible to by-pass the very tedious algebra involved
in the method of comparing coefficients. The required equations are obtained by the
much simpler task of collecting all diagrams with the same set of free external lines and
setting their algebraic sum to zero. They have been written down in § 3 of II.
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